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ABSTRACT
The cold-start problem is commonly encountered in recommender
systems when delivering recommendations to users or items with
limited interaction information and can seriously harm the perfor-
mance of the system. To cope with this issue, meta-learning-based
approaches have come to the rescue in recent years by enabling
models to learn user preferences globally in the pre-training stage
followed by local fine-tuning for a target user with only a few inter-
actions. However, we argue that the user representation learned in
this way may be inadequate to capture user preference well since
solely utilizing his/her own interactions may be far from enough
in cold-start scenarios. To tackle this problem, we propose a novel
meta-learning method named M2EU to enrich the representations
of cold-start users by incorporating the information from other
similar users who are identified based on the similarity of both in-
herent attributes and historical interactions. In addition, we design
an attention mechanism according to the variances of ratings in
the aggregation of similar user embeddings. To further enhance the
capability of user preference modeling, we devise different neural
layers to generate user or item embeddings at the rating level and
utilize the weight-sharing strategy to guarantee adequate param-
eters learning of neural layers in our meta-learning approach. In
meta-training with mini-batching, we adopt an incremental learn-
ing scheme to learn a set of generalized parameters for all tasks.
Experimental results on the public benchmark datasets demonstrate
that M2EU outperforms state-of-the-art methods through extensive
quantitative evaluations in various cold-start scenarios.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Recommender systems play a vital role in many real-world applica-
tions, including e-commerce platforms, news portals, and online
advertising. Most recommender systems recommend candidate
items for users according to their interactive history and help them
discover what they want in less time. However, these systems are
not always useful in addressing the cold-start problem, which arises
when there is a lack of user-item interactions. As a result, research
on cold-start recommendations is both challenging and crucial.

Previous studies have attempted to address the cold-start prob-
lem through data augmentation, which can be accomplished using
two strategies. One approach involves randomly dropping out cer-
tain user-item interactions or user/item attributes, while still requir-
ing the model to use the limited information to recover the com-
plete contents, including the deleted parts. For example, Volkovs
et al. [24] thought the cold-start issue means that preference infor-
mation is missing and applied dropout [20] to input mini-batches
and trained a DNN-based latent model that generalizes to missing
input. Zheng et al. [30] also regarded the cold start as a missing
user-item interaction problem and built the Multi-view Denoising
Graph Auto-Encoders to randomly drop out some user-item inter-
actions and force the decoder to recover the full views only relying
on these limited views. For another, some data augmentation-based
methods solve the cold start problem by incorporating auxiliary
information into the recommender models, such as content-based
recommender systems [16, 21, 26]. In [26], the authors proposed a
hybrid model to combine item features learned from the item de-
scriptions into a collaborative filtering model timeSVD++. In [21],
a graph auto-encoder framework was proposed based on differen-
tiable message passing on the bipartite interaction graph, where
side information is included in the dense hidden layer in the form
of user and item feature vectors. Although such approaches en-
rich user or item representations to some extent, recommender
systems tend to recommend the same items to users with similar
side information, neglecting fine distinctions.

The core idea of recommender systems is to discern user inter-
ests based on inherent user attributes and interaction information,
especially user-item interactions. In cold-start scenarios, most rec-
ommender systems have difficulties in predicting user preferences
due to sparse user-item interactions, and thus often bring some poor
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recommendations to users. Recently, meta-learning-based methods
have been extensively studied to alleviate the cold-start problem
with the superiority that the pre-trained model can be fine-tuned
to rapidly adapt to new users only with a few interactions. In this
line of research, [22] introduced a meta-learning formulation into
the recommendation problem and elaborated the rationality of a
meta-learning perspective for cold start. Inspired by this, more
meta-learning-based methods were proposed to alleviate the cold-
start problem, leading to the meta-learning paradigm as one of the
most feasible learning frameworks for cold-start recommendations.

Although the meta-learning paradigm has achieved promising
results in the cold-start recommendation, there are still some prob-
lems to solve or further optimize in such methods. Firstly, user
representations usually stand for user comprehensive characteris-
tics and thus are critical for recommender models to estimate user
preferences. However, to represent user preferences by solely uti-
lizing new users’ own information consisting of inherent attributes
and historical interactions is far from enough, especially in cold-
start scenarios where user interaction information is lacking. This
phenomenon calls for a challenging but crucial task to enrich user
representations. Secondly, when user representations are incorpo-
rated with user-item interactions, they are unable to reflect user
preferences clearly if the items rated differently are addressed with
the same neural layers, such as [11]. Some researchers try to set
different neural layers at the rating level. However, the ratings on
different levels are unequal in quantity, where the neural layers cor-
responding to the ratings with fewer interactions may be learned
inadequately in meta-training. Thirdly, recommender models are
usually trained with the mini-batching strategy for fewer mem-
ory resources. By this means, the trained models tend to forget
the previously learned knowledge and are unable to learn a set of
generalized parameters well for all tasks.

In this paper, we present a novel Meta-learning method via
Enhancing User preference estimation for the cold-start recom-
mendation, namedM2EU. To tackle the above challenges, we en-
rich user representations by incorporating the information of some
similar users. To identify these similar users, we select the top 𝐾
similar users based on the similarity of both inherent attributes and
interaction information from the customers who rated a mutually
interacted item similarly with the cold-start user. We then design
an attention mechanism based on variances of ratings to aggregate
the information of the selected top 𝐾 similar users. To reflect user
preferences more clearly, we set different neural layers at the rating
level to generate user and item embeddings and introduce a weight-
sharing strategy to avoid learning the parameters of embedding
layers inadequately. To improve the generalization of the trained
model, we adopt an incremental learning scheme to make the model
learn the new task batch while simultaneously keeping the memory
of the previously learned knowledge in meta-training.

The major contributions in this paper are summarized as follows:

• We incorporate the information of themost similar users to enrich
user representation, which is a novel method combing meta-
learning and data augmentation for cold-start recommendations.

• We set different neural layers at the rating level to generate
user/item embeddings in our meta-learning method. Meanwhile,

we introduce a weight-sharing mechanism to avoid learning the
parameters of embedding layers inadequately on some levels.

• We adopt an incremental learning scheme to improve the model
generalization with the mini-batching strategy in meta-training.

• The extensive experiments on threewidely adopted datasets show
the proposed M2EU outperforms the state-of-the-art methods
on some public benchmarks. The source code is available at
https://github.com/zhenchaowu/M2EU.

2 RELATEDWORK
2.1 Cold-start Recommendation
The cold-start problem is a common issue in recommender systems
that tends to occur when few user-item interactions exist and can
harm the recommendation performance. Data augmentation is a
traditional solution to deal with this issue by incorporating aux-
iliary information into the recommender systems. Such methods
can enhance user preference estimation by enriching user or item
representations, such as using user attributes [16, 19, 28], item at-
tributes [4, 17, 18], or relational data [10, 27, 29]. Besides, other data
augmentation-based methods [24, 30, 32] regard cold start as a miss-
ing data problem where user content, item content, or user-item
interactions are missing, and take the measure that randomly drops
out some useful information while forcing the model to recover the
previous full contents. Although user and item representations can
be enriched with data augmentation, the slight preference differ-
ences are ignored among the users with similar side information.
In addition, some transfer learning-based methods [6, 7, 9] alleviate
the cold-start problem by utilizing the data and knowledge from
a source domain to train a model for the target domain. Recently,
some methods [2, 8, 11, 13] try to solve the cold-start problem based
on the meta-learning paradigm. Here, the global parameters of the
model are learned with the existing user data and locally updated
to rapidly adapt to the new user preferences with a few interactions.
In this sense, meta-learning-based methods are only applicable in
the incomplete user cold-start scenario.

2.2 Meta Learning
The goal of meta-learning is to understand how learning itself can
be flexible according to the domain or task under study [23]. The
meta-learner can work at the both example level and across-task
level. The pre-trained model can be fine-tuned by the meta-learner
to adapt to a task only with a few examples belonging to this task.

Given the cold-start problem usually occurs in the case of sparse
interactions, the pre-trained recommender model can be fine-tuned
to rapidly adapt to the cold-start user preference in the same way
as meta-learning naturally. For example, Lee et al. [8] developed
a meta-learning-based recommender system to estimate new user
preferences with a few consumed items. Pan et al. [13] designed
a meta-learning-based model to improve CTR predictions by gen-
erating desirable initial embeddings for new items. Lu et al. [11]
presented a meta-learning approach to address the cold-start prob-
lem on heterogeneous information networks using a co-adaptation
meta-learner with both semantic- and task-wise adaptations. Dong
et al. [2] constructed two memory matrices that can store task-
specific memories and feature-specific memories to guide the model
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Figure 1: The overall architecture of the proposed M2EU framework. The representation builders (marked with red dotted
box) aim to generate the user representation u𝑜 and item representation i. In the preference-specific adapter (marked with
green dotted box), user representation u𝑜 is used to generate the weights 𝑔𝑢 for the prediction module parameters 𝜙 (marked
with blue dotted box) that predicts the rating score 𝑟𝑢,𝑖 for the input user 𝑢 and item 𝑖. The reweighting parameter 𝜙𝑢 is locally
updated on the support set S𝑢 while the global parameter 𝜃 is updated on the query set Q𝑢 .

to initialize the personalized parameters and predict the user pref-
erences respectively. Wang et al. [25] proposed a meta-learning
approach that can enhance user preferences with social relations
and a preference-specific adapter. However, [2, 8, 13] take no more
effective measures to enrich user representations while [11, 25]
incorporate user-item interactions into user representations with
the same neural layers on different rating levels.

3 PROBLEM FORMULATION
In this paper, we aim to predict the unknown rating score 𝑟𝑢,𝑖
between the user 𝑢 and item 𝑖 in cold-start scenarios. To reduce
the effect of sparse user-item interactions, we introduce the meta-
learning paradigm into the recommender system to better adapt
to user preference. In our method, each user can be regarded as a
learning task, whose interactions are equivalent to the examples
of this task. We separate each task T𝑢 containing the interacted
items into the support set S𝑢 and query set Q𝑢 that are mutually
exclusive. Here we look upon the support set as the item set rated
by the user, and the query set as the item set to be predicted in
the meta-learning framework. In the phase of meta-training, for
each task, T𝑢 in the meta-training task set T 𝑡𝑟 , only the prediction
module parameters𝜙 is fine-tuned to rapidly adapt to the preference
of this task w.r.t. the loss on the support set S𝑢 . Then the global
parameter 𝜃 is updated through the backpropagation of the loss
on the query set Q𝑢 , which is calculated under the above-updated

parameters𝜙 . Duringmeta-testing, for each task,T𝑢 in themeta-test
tasks T 𝑡𝑒 , the support set S𝑢 is still used to update the prediction
module parameters 𝜙 to rapidly adapt to the preference of this test
task, but the rating scores of the items in the query set Q𝑢 will
be directly predicted using the just locally updated parameters on
the support set S𝑢 . Since we hope that M2EU can alleviate the
cold-start problem in various scenarios, we consider the following
three situations: (1) UC: the user cold-start scenario, (2) IC: the
item cold-start scenario and (3) UIC: the user and item cold-start
scenario. The details will be illustrated in the section 5.1.1.

4 THE PROPOSED APPROACH
In this section, we introduce the proposed meta-learning approach
M2EU for cold-start recommendations.

4.1 Overview
As illustrated in Fig. 1, M2EU consists of three parts: user and item
representation builders (red dotted box), preference-specific adapter
(green dotted box), and prediction module (blue dotted box).

In representation builders, we make use of user-item interactions
to generate user and item representations, where each user repre-
sentation is enriched by incorporating the aggregation of the top
𝐾 similar user embeddings. Then we set the weights 𝑔𝑢 related to
user representation in the preference-specific adapter, aiming to ad-
just the prediction module parameters 𝜙 to the preference-specific

1160



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan. Zhenchao Wu and Xiao Zhou

knowledge 𝜙𝑢 in each task. During both meta-training and meta-
testing, 𝜙𝑢 can be fine-tuned on the support set S𝑢 to rapidly adapt
to user preference. The global parameter 𝜃 is updated according to
the loss on the query set Q𝑢 during meta-training while the rating
scores of the items in the query set Q𝑢 will be directly predicted
based on the locally updated parameters 𝜙∗𝑢 during meta-testing.

4.2 Identifying Similar Users
In general, the cold-start users have a few user-item interactions,
which produce poor user representations where the interactions
may be incorporated. To overcome this problem, we enrich user
representations with the information of other users similar to the
cold-start users. Therefore, similar users are closely related to the
quality of user representations and have to be selected cautiously
with a very reasonable strategy.

In our method, we think that the user 𝑢𝑖 and 𝑢 𝑗 are similar if
they gave the common item the same rating score. Based on this
observation, we can seek out many users similar to the cold-start
users, but some of them may rate other mutually interacted items
differently or have a certain amount of differences in user content
from the cold-start users. With this strategy, we may be unable to
get real similar users in fact. To identify the high-quality similar
users, we further select the top 𝐾 similar users from the above
similar users according to both inherent attributes and interaction
information, referring to Eq. (1). Compared with the cold-start user,
each of the top 𝐾 similar users is asked to not only have high
similarity in user content but also give similar rating scores to most
mutually interacted items. The similarity difference between the
user 𝑢𝑖 and 𝑢 𝑗 is formulated as

𝐸𝑠𝑖𝑚
(
𝑢𝑖 , 𝑢 𝑗

)
= 𝛼

HD(𝑎𝑢𝑖 , 𝑎𝑢 𝑗 )
𝑁

+ (1 − 𝛼)
∑𝐿
𝑙=1 ABS(𝑟𝑖𝑙 − 𝑟 𝑗𝑙 )

𝐿
, (1)

where HD (·, ·) and ABS (·) represent the operators of Hamming
Distance and Absolute Value, respectively. 𝑎𝑢𝑖 and 𝑎𝑢 𝑗 are the
feature vectors of the user 𝑢𝑖 and 𝑢 𝑗 . Let 𝑁 represent the number
of user features and 𝐿 represent the number of the items rated
by both 𝑢𝑖 and 𝑢 𝑗 . 𝑟𝑖𝑙 and 𝑟 𝑗𝑙 represent the rating scores of the
𝑙th mutually interacted item given by 𝑢𝑖 and 𝑢 𝑗 , respectively. 𝛼
is a manually set constant that controls the influences of the two
factors on the similarity between 𝑢𝑖 and 𝑢 𝑗 . Although the two
factors have different scales, their value ranges are bounded and
approximate. The experimental results in the section 5.2 could verify
the feasibility of this strategy in combining the two factors.

4.3 Recommender Model
Here, we will illustrate the recommender model of M2EU, which
enriches user representations with the information of the top 𝐾
similar users at the data level and updates the local parameters to
rapidly adapt to user preferences at the model level.

4.3.1 Embedding Builders. Recommender systems can predict the
rating scores between users and items from the input user and item
representations. In most cases, recommender systems are used to
recommend items to the users according to the user’s preferences.
Thus we propose a novel scheme to enrich user representations
by incorporating the information of the top 𝐾 similar users for

the cold-start recommendation. Below we will elaborate on the
procedure of enriching user representations in detail.

Firstly, M2EU performs the process of embedding initialization
with the strategy of [8]. It is known that a user has 𝑁 features. The
model transforms each feature to the one-hot or multi-hot vector,
the embedding ofwhich is generatedwith the corresponding feature
embedding matrix and has a fixed dimension. Afterward, the model
concatenates all the feature embeddings to generate the initial user
embedding u𝑖𝑛𝑖𝑡 , which is shown as

u𝑖𝑛𝑖𝑡 = [e1 ⊕ e2 ⊕ · · · ⊕ e𝑁 ] , (2)

where ⊕ is the concatenation operation, and e𝑛 is the 𝑛th feature
embedding. Similarly, M2EU can generate the initial item embed-
ding i𝑖𝑛𝑖𝑡 for the item 𝑖 .

Then, M2EU incorporates user-item interactions to generate the
user and item embeddings. In the phase of generating each user
embedding, our model concatenates the initial user embedding and
each initial interacted item embedding respectively, then generates
the embedding of user-item interaction with the weight matrix
corresponding to the rating between the user and item. Generally
speaking, the users should have different preferences on the items
rated differently. If all the interacted items are addressed in the same
way, the interaction information would be unable to succeed in
expressing user preferences. Given a user 𝑢 and the corresponding
support set S𝑢 , the user embedding u is defined as:

u = MEAN{𝑖 |𝑖∈S𝑢 }𝜏 (W𝑟 (u𝑖𝑛𝑖𝑡 ⊕ i𝑖𝑛𝑖𝑡 )), (3)

whereW𝑟 is the weight matrix to generate the embeddings of user-
item interactions with the rating 𝑟 ,MEAN(·) is mean pooling and
𝜏 is the activation function (we use ReLU). However, for both the
users and items, there are different numbers of ratings among the
rating levels. Therefore, the parameters of weight matrixW𝑟 may
be learned inadequately if there are only a small amount of user-
item interactions with the rating 𝑟 in the training set. To overcome
this problem, we introduce a weight sharing mechanism [21] to
represent theweightmatrixW𝑟 with the shared parameters onmost
rating levels. Following [31], the weight matrix W𝑟 is redefined as
W𝑟 =

∑𝑟
𝑠=1𝑇𝑠 . Here, the sequence of the shared weight matrices{

𝑇1,𝑇2, . . . ,𝑇𝑁𝑟
}
is actually learned in meta-training, in which 𝑁𝑟

is the number of all the rating levels. In M2EU, the item embedding
i is generated with the same strategy.

Then the user representations are enriched by incorporating the
information of the top 𝐾 similar users selected with the strategy
in the section 4.2. Suppose that the embedding set of the top 𝐾
similar users is

{
u𝑠1 , u𝑠2 , . . . , u𝑠𝐾

}
, then we propose a novel atten-

tion mechanism to aggregate these embeddings. Empirically, the
rating score represents the user preference level for the item. If a
user gave more categories of rating levels to the interacted items,
the generated user embedding can reflect the user preference more
clearly. The fact is observed and verified that the larger the vari-
ance of a series of digits is, the more the categories of these digits
are. Inspired by this prior, the attention mechanism in M2EU is
based on variances of ratings about each similar user. Here, we
denote the set of rating variances about top 𝐾 similar users by{
𝑣𝑎𝑟𝑠1 , 𝑣𝑎𝑟𝑠2 , . . . , 𝑣𝑎𝑟𝑠𝐾

}
, then the attention score of the 𝑘th similar
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user embedding is calculated by the following formula:

𝛼𝑘 =
exp(𝑣𝑎𝑟𝑠𝑘 )∑𝐾
𝑖=1 exp(𝑣𝑎𝑟𝑠𝑖 )

. (4)

Then the aggregation of the top 𝐾 similar user embeddings is

u𝑠 =
𝐾∑︁
𝑘=1

𝛼𝑘u𝑠𝑘 . (5)

Finally, we incorporate the aggregation u𝑠 into the user embedding
u to generate final user representation u𝑜 , which is calculated by
Eq. (6) or Eq. (7) as follows:

u𝑜 = W(𝜆1u + 𝜆2u𝑠 ) + b (6)

u𝑜 = 𝜆1 (Wu + b) + 𝜆2 (Wu𝑠 + b), (7)

whereW is the weight matrix and b is the bias vector, which are the
parameters to be learned in meta-training, while 𝜆1 and 𝜆2 are the
parameters that control the contributions of the user embedding u
and the similar user aggregation u𝑠 to generate final user represen-
tation u𝑜 . Similarly, they are also learnable in meta-training.

The experiments have validated that Eq. (6) and Eq. (7) have
different performance on different datasets (see section 5).

4.3.2 Prediction. After obtaining the final user representation u𝑜 ,
M2EU can predict the rating score 𝑟𝑢,𝑖 between u𝑜 and an unob-
served item i as follows:

𝑟𝑢,𝑖 = MLP(u𝑜 ⊕ i), (8)

where MLP is a two-layer multilayer perceptron with the ReLU
activation function. Inspired by the preference-specific adapter
[25], we set the weights related to user representation for the MLP
parameters, which help the model customize the globally shared
prior knowledge to preference-specific knowledge. The reweighting
scheme on the prediction module is implemented by

𝑔𝑢 = 𝜎 (W𝑔u𝑜 + b𝑔), (9)

where 𝑔𝑢 is the generated weights, which keeps the same shape
with the MLP parameters 𝜙 , W𝑔 , and b𝑔 are the weight matrix and
bias vector, and 𝜎 (·) is the sigmoid activation function. For the task
T𝑢 , the MLP parameters 𝜙 is adjusted to the preference-specific
knowledge 𝜙𝑢 via the following formula:

𝜙𝑢 = 𝜙 ◦ 𝑔𝑢 , (10)

where ◦ is the element-wise product operation.

4.3.3 Loss Function. In the meta-learning paradigm, the parame-
ters are locally and globally updated w.r.t. the losses on the support
set and query set, respectively. Here, we first define the loss function
on the support set as

L𝑆 (𝜔 ∪ 𝜙𝑢 ,S𝑢 ) =
1

|S𝑢 |
∑︁
𝑖∈S𝑢

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2, (11)

where 𝜔 is all the parameters of the model except the prediction
module parameters 𝜙 , 𝑖 .𝑒 ., 𝜃 = 𝜔 ∪ 𝜙 , and 𝑟𝑢,𝑖 and 𝑟𝑢,𝑖 are the real
and predicted rating scores between the user 𝑢 and item 𝑖 .

Different from the loss function on the support set, we intro-
duce two regularizers weighted by the factors 𝛾1 and 𝛾2 to the loss
function on the query set:

L𝑄 (𝜔 ∪ 𝜙∗𝑢 ,Q𝑢 ) =
1

|Q𝑢 |
∑︁
𝑖∈Q𝑢

(𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2

+ 𝛾1
𝑤 (u𝑜 − u

′
𝑜 )
2
2 + 𝛾2

1
|Q̃𝑢 |

∑︁
𝑖∈ Q̃𝑢

i − i
′2
2,

(12)

where𝑤 is set to 1 when the information of the user 𝑢 is partially
dropped out, otherwise set to 0, and Q̃𝑢 ⊂ Q𝑢 contains the selected
items whose interactions are all dropped out. u

′
𝑜 is the generated

user representation with randomly dropping out some user-item
interactions and similar users, and i

′
is the generated item embed-

ding only with the item content. The first regularizer encourages
the model to generate the rich user representation with sparse user-
item interactions, while the second regularizer aims to solve the
generating item embedding problem without any interactions.

4.3.4 Dropout. In meta-training, we randomly select some tasks
in each task batch, then drop out some interactions and similar
users of the selected tasks. This operation aims to force the model
to produce high-quality user representations in spite of the lack
of interactions and encourage the pre-trained model to be fine-
tuned only with a few interactions to adapt to the cold-start user
preferences. In addition, this operation also can avoid over-fitting.

In themeta-learning recommender system, the users have to own
some interactions, with which the pre-trained model can be fine-
tuned to rapidly adapt to user preferences. However, it is necessary
for us to consider how meta-learning models work in the complete
item cold-start scenario. To generate the embeddings of the items
without any interactions, we design a neural network module to
produce accurate item embedding based on the item content. In
M2EU, we randomly select some items from each task, then drop
out all the interactions of the selected items. The model is forced to
utilize item content to generate the item embedding similar to that
based on interactions.

4.3.5 Incremental Learning. To reduce the memory requirement
in meta-training, we introduce the strategy of mini-batching to
train the model, where the task batches are learned one by one.
However, the model tends to learn the new task batch while simul-
taneously forgetting the previously learned knowledge, which is
unable to learn a set of generalized parameters. To solve this prob-
lem, we adopt the scheme of incremental learning that utilizes a
momentum-based dynamic controller 𝜂 to adjust the contributions
of the previous and new knowledge. After the 𝑝th task batch is
learned, the global parameters 𝜃𝑝 can be obtained by

𝜃𝑝 = 𝜂𝜃𝑝 + (1 − 𝜂)𝜃𝑝−1, (13)

where 𝜃𝑝 is the global parameters learned just based on 𝑝th task
batch, and 𝜃𝑝−1 is the global parameters before the 𝑝th task batch
is learned. The dynamic controller 𝜂 is defined like [14]:

𝜂 = exp(−𝛽 𝑝
𝑃
), (14)

where 𝑃 is the number of task batches in meta-training, and 𝛽 is
the decay rate. Referring to Eq. (14), we can realize that 𝜂 keeps
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declining but the speed of descent is reduced continuously during
each epoch of meta-training.

4.4 Meta Optimization
In the meta-learning recommender system, the preference-specific
knowledge 𝜙𝑢 is fine-tuned to rapidly adapt to user preference with
a few user-item interactions on the support setS𝑢 . The personalized
knowledge 𝜙∗𝑢 is calculated by

𝜙∗𝑢 = 𝜙𝑢 − 𝜇1∇𝜙𝑢L𝑆 (𝜔 ∪ 𝜙𝑢 ,S𝑢 ), (15)

where 𝜇1 is the learning rate in the local update.
Then, the model will predict the rating scores of the items in

the query set Q𝑢 based on the updated parameters 𝜙∗𝑢 . The global
parameters 𝜃 can be updated on the query set Q𝑢 by

𝜃 = 𝜃 − 𝜇2∇𝜃
∑︁
T𝑢 ∈B

L𝑄 (𝜔 ∪ 𝜙∗𝑢 ,Q𝑢 ), (16)

where 𝜇2 is the learning rate in global update, and B is the cur-
rent task batch. The overall process of meta-training is shown in
Algorithm 1.

5 EXPERIMENTS
In this section, we first introduce the details of the experimental
setup, then show and analyze the experimental results in three as-
pects: (1) the overall performance of M2EU and the state-of-the-art
approaches; (2) the ablation study about the different components
applied in M2EU; (3) the impacts of parameters on recommendation
performance.

5.1 Experimental Setup
5.1.1 Dataset. We conduct experiments on three public bench-
mark datasets: Douban Book1, MovieLens2 and Yelp3, which are
accessible from the websites. Table 1 shows the statistics of the
preprocessed datasets.

To obtain the meta-training and meta-testing tasks, we first
divide the users and items into two groups (existing/new) with a
ratio of 8:2 for each dataset with the strategy from [11]. Then we
split all the tasks into four scenarios, 𝑖 .𝑒 . NC denotes the scenario
where there are only existing users and items, UC denotes the
scenario where there are new users and existing items, IC denotes
the scenario where there are existing users and new items and
UIC denotes the scenario where there are only new users and
items. The tasks in the first scenario are regarded as meta-training
data, and the rest are meta-testing data in cold-start scenarios.
Moreover, we randomly extract 10% of meta-training data as the
fourth meta-testing task to evaluate the performance of our model
in the traditional scenario.

For meta-training and meta-testing data, we select the tasks
including between 14 and 100 interacted items on Douban Book and
MovieLens, while selecting the tasks containing between 20 and 50
interacted items on Yelp like [25]. For a task with more than 100 or
50 rated items, we randomly select 100 or 50 items as experimental
data for this task. In each task, we randomly extract 10 items as the

1https://book.douban.com
2https://grouplens.org/datasets/movielens/
3https://www.yelp.com/dataset/challenge

Algorithm 1 : The overall process of meta-training
Input: The meta-training tasks T𝑡𝑟 ,

The interactions of each item in T𝑡𝑟 ,
The top 𝐾 similar users of each user in T𝑡𝑟 ,
The learning rate 𝜇1 and 𝜇2.

Output: The learned global parameters 𝜃 .
1. Randomly initialize 𝜃 = 𝜔 ∪ 𝜙
2. While not converge do
3. Sample the 𝑝th batch of tasks B𝑝 = {T𝑢 | T𝑢 ∈ T𝑡𝑟 }
4. Randomly drop out some user information referring to 4.3.4
5. foreach task T𝑢 ∈ B𝑝 do
6. Randomly drop out some item information referring to 4.3.4
7. Compute the final user representation u𝑜 according to (6) or (7)
8. Compute the preference-specific knowledge 𝜙𝑢 according to (10)
9. Locally update to obtain 𝜙∗

𝑢 according to (15)
10. Globally update to obtain 𝜃𝑝 according to (16)
11. Obtain 𝜃𝑝 by incremental learning according to (13)
12. return 𝜃

query set Q𝑢 , and the other items are collected as the support set
S𝑢 . For the users in meta-training, we seek similar users for them
with the interaction information which is only from the support set
of meta-training. However, similar users of the meta-testing tasks
are selected with the interaction information from both the whole
meta-training set and the support set of meta-testing.

5.1.2 Baselines. To evaluate the effectiveness of the proposed
model, we compare our method with three kinds of baselines. (1)
Traditional methods, including FM, NeuMF, Wide&Deep and GC-
MC. (2)Data augmentation based methods, including DropoutNet
and Heater. (3)Meta-learningmethods, includingMeLU, MetaEmb,
MAMO, MetaHIN, PAML, and GME. Here we redefine the output
units of some baselines as a linear layer for rating prediction.
• FM [15] is a feature-based baseline that is able to model all in-
teractions between variables using factorized parameters. Here,
we incorporate the user and item content as the input features.

• NeuMF [5] is a neural network architecture for collaborative fil-
tering consisting of a generalized matrix factorization component
and a MLP component.

• Wide&Deep [1] is an advanced learning framework combining
wide linear models and deep neural networks, which improves
the memorization and generalization of recommender systems.

• GC-MC [21] is a graph auto-encoder framework for the matrix
completion task in recommender systems, where the user and
item embeddings are generated by GCN.

• DropoutNet [24] is a neural network-based model for the cold-
start problem, which regards cold start as a missing data problem.

• Heater [32] is a combined separate training and joint-training
framework, which avoids the error superimposition issue and
improves the model effectiveness.

• MeLU [8] is a meta-learning method, which estimates new users’
preferences with a few consumed items. The method alleviates
the user cold-start problem with the strategy of MAML.

• MetaEmb [13] is a meta-learning method for CTR prediction,
which generates initial embeddings for new ad IDs with the user
and item content.

• MAMO [2] is a meta-learning method, which makes use of two
memory matrices to guide the model to initialize the personalized
parameters and fast predict user preferences.

1163



M2EU: Meta Learning for Cold-start Recommendation via Enhancing User Preference Estimation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan.

Table 1: Statistics of the preprocessed datasets.

Douban Book MovieLens-1M Yelp
Users 10,592 6,040 51,624
Items 21,192 3,881 34,259
Ratings 649,381 1,000,209 1,301,869
Sparsity 99.7107 % 95.7331% 99.9262%

User content Location Age, Occupation,
Gender, Zip code

Fans, Avg.Rating,
Year jointed Yelp

Item content Publisher,
Publication year

Rate, Genre
Publication year Stars, PostalCode

Range of ratings 1 ∼ 5 1 ∼ 5 1 ∼ 5

• MetaHIN [11] is a novel meta-learning approach to address cold-
start recommendation on HINs, whose meta-learner is equipped
with semantic- and task-wise adaptations.

• PAML [25] is a meta-learning approach, which designs a novel
preference-specific adapter to adapt the globally shared prior
knowledge to the preference-specific knowledge.

• GME [12] utilizes graph neural networks and meta learning to
generate desirable initial embeddings for new ad IDs, which
presents three specific GMEs from different perspectives. Here
we select the optimal one as the baseline, 𝑖 .𝑒 ., GME-A.

5.1.3 Evaluation Metrics. We adopt two widely-employed evalua-
tion metrics like [2] in our experiments. One is mean absolute error
(MAE), which measures the differences between the predicted and
real rating scores. The other is normalized discounted cumulative
gain at rank 𝐾 (NDCG@𝐾), which evaluates the top 𝐾 ranking
accuracy of the predicted rating scores. Here, we set 𝐾 as 5.

5.1.4 Environment and Parameter Settings. In this paper, the ex-
periments were carried out on a Linux platform with a 2.2GHz
Intel(R) Xeon(R) Silver 4214 CPU and a Tesla T4 GPU. Our method
is currently implemented using Pytorch 1.9.0.

In M2EU, the learnable parameters are randomly initialized fol-
lowing the Xavier normal distribution [3]. For the hyper-parameters,
we introduce the initialization details here. The parameter 𝛼 is set
as 0.2, 0.5, and 0.3 for Douban Book, MovieLens, and Yelp, respec-
tively. The number of similar users 𝐾 is set as 10 for Douban Book
and MovieLens and 15 for Yelp. Besides, we set the user and item
embedding dimensions as 16 on Douban Book and Yelp and 32 on
MovieLens. But the batch size of meta-training is all set as 64. The
global meta-learning rate is all set as 0.005 for the three datasets,
and the local meta-learning rate is set as 0.00005 for Douban Book
and 0.0005 for MovieLens and Yelp. The number of local updates is
set as 5 and the parameter 𝛽 is set as 2 for the three datasets. The
dropout rates on users and items are set as 0.3 and that on similar
users is set as 0.2 for Douban Book. And the corresponding dropout
rates are set as 0.4 and 0.3 for MovieLens and 0.7 and 0.3 for Yelp.
The parameters 𝛾1 and 𝛾2 are set as 0.1 and 0.01 for Douban Book
and MovieLens while 0.1 and 0.02 for Yelp.

5.2 Experimental Results

5.2.1 Overall Performance. We compare M2EU with the baselines
on the recommendation performance in four scenarios, 𝑖 .𝑒 . three

cold-start scenarios and the non-cold-start scenario. The quantita-
tive evaluations on the three datasets are shown in Table 2.

From the experimental results, we observe that M2EU consis-
tently yields the best performance among all methods on the three
datasets. In the first three scenarios, 𝑖 .𝑒 . the cold-start scenarios,
M2EU improves over the best baseline 𝑤.𝑟 .𝑡 . MAE by 2.93-5.72%,
6.26-7.75% and 0.41-3.34% on Douban Book, MovieLens and Yelp, re-
spectively. Among these baselines, the performance of DropoutNet
[24] is least competitive roughly though it is a specialized method
for cold-start recommendation. The reason might be that the U
and V obtained by matrix decomposition are inaccurate due to the
sparsity and large size of the interaction matrix between users and
items, and the product of U and V is treated as the ground truth in
the training process. Heater [32] yields a good performance similar
to the meta-learning methods on Douban Book but a mediocre
performance on MovieLens and Yelp. The traditional methods have
incorporated the user and item content into recommender mod-
els, which achieve better performance than that just relying on
the user and item IDs. However, most meta-learning methods can
yield better results than these methods in most cases, owning to
the superiority of updating the local parameters of the models to
rapidly adapt to specific user preferences. To be specific, these meta-
learning methods basically achieve good performances on Movie-
lens, but some of them work mediocrely on Douban Book and Yelp.
For example, MeLU [8] performs worse than other meta-learning
methods [2, 11, 25]𝑤.𝑟 .𝑡 . MAE on Douban Book in each scenario.
It may be because fewer user contents are utilized to enrich user
representations and the strategy of the local parameter update is
simple. In addition, there are undesirable results for MetaEmb [13]
on Douban Book in the scenarios (𝑖 .𝑒 . IC and UIC) and on Yelp in
the scenarios (𝑖 .𝑒 . UC, IC and UIC), and for GME [12] on Douban
Book in the scenarios (𝑖 .𝑒 . UC, UIC, and NC). The reason for this
phenomenon may be that over-fitting occurs in the meta-training
phases and hinders the generated models from generalizing to some
cold-start scenarios. Finally, experimental results in NC have a sim-
ilar tendency to that in cold-start scenarios on Douban Book and
Yelp. But these meta-learning methods yield similar performances
with other methods on Yelp in this scenario. This might be because
the superiority of meta-learning is inconspicuous on Yelp in the
traditional scenario compared with the cold-start scenarios.

Althoughmost meta-learning methods perform better than other
kinds of baselines, they still underperform M2EU in all scenarios.
MeLU, MetaEmb, and MAMO incorporate the content information
into the user and item embeddings, but they take no more measures
to enrich user and item representations. MetaHIN captures the
HIN-based semantics to enrich user representations, however, user
representations are aggregated with the information of items rated
differently which are generated with the same weight matrix. GME
refines the initial item ID embeddings using neighbor attributes,
but user representations are obtained only with the user contents.
PAML utilizes social relations to enrich user representations, whose
performances are good but inferior to MeLU.

5.2.2 Ablation Study. We conduct some ablation experiments to
investigate the effects of two factors in identifying similar users and
the contributions of the components applied in the recommender
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Table 2: Experimental results of all the methods on the three datasets in four scenarios.

Model UC IC UIC NC
MAE ↓ NDCG@5 ↑ MAE ↓ NDCG@5 ↑ MAE ↓ NDCG@5 ↑ MAE ↓ NDCG@5 ↑

D
ou

ba
n
Bo

ok

FM 0.6633 0.8980 0.7190 0.8950 0.7345 0.8897 0.6505 0.8940
NeuMF 0.6384 0.9003 0.6502 0.8970 0.6643 0.8922 0.6349 0.8974

Wide&Deep 0.6633 0.8937 0.6805 0.8955 0.6830 0.8898 0.6610 0.8898
GC-MC 0.6595 0.8720 0.6413 0.8764 0.6534 0.8764 0.6505 0.9164

DropoutNet 0.7715 0.8827 0.7746 0.8879 0.7738 0.8848 0.7564 0.8696
Heater 0.6296 0.8809 0.6397 0.8886 0.6445 0.8848 0.6397 0.8712
MeLU 0.6741 0.8930 0.6838 0.8901 0.6900 0.8830 0.6754 0.8869

MetaEmb 0.6296 0.9162 0.7028 0.9006 0.7380 0.8896 0.6204 0.9202
MAMO 0.6173 0.8834 0.6182 0.8965 0.6141 0.8955 0.6445 0.8722
MetaHIN 0.6034 0.8944 0.6163 0.8949 0.6156 0.8913 0.6374 0.8855
PAML 0.6018 0.8958 0.6135 0.8951 0.6170 0.8973 0.6229 0.9082
GME 0.6736 0.8984 0.6135 0.9209 0.6609 0.9086 0.6905 0.8832
M2EU 0.5758 0.9233 0.5784 0.9271 0.5961 0.9191 0.5824 0.9221

M
ov
ie
Le
ns
-1
M

FM 0.8668 0.8646 0.9110 0.8271 0.9424 0.8203 0.8565 0.8689
NeuMF 0.8826 0.8628 0.8919 0.8418 0.9370 0.8401 0.8679 0.8611

Wide&Deep 0.9115 0.8582 0.9745 0.8254 0.9679 0.8250 0.9187 0.8514
GC-MC 0.8824 0.8929 0.9691 0.8354 1.0112 0.8313 0.8756 0.8941

DropoutNet 0.9655 0.8477 1.0008 0.8233 1.0021 0.8240 0.9628 0.8471
Heater 0.8880 0.8464 0.9583 0.7979 0.9496 0.8028 0.8969 0.8459
MeLU 0.8160 0.8387 0.8959 0.8324 0.8833 0.8274 0.8087 0.8408

MetaEmb 0.8010 0.8781 0.8934 0.8533 0.8926 0.8559 0.7846 0.8838
MAMO 0.8002 0.8479 0.8899 0.8291 0.8735 0.8225 0.7970 0.8470
MetaHIN 0.7824 0.8657 0.8660 0.8432 0.8516 0.8423 0.7814 0.8651
PAML 0.8046 0.8632 0.8764 0.8794 0.8665 0.8766 0.8032 0.8637
GME 0.8414 0.8681 0.8769 0.8798 0.8659 0.8723 0.8682 0.8564
M2EU 0.7334 0.8940 0.7989 0.8844 0.7916 0.8830 0.7284 0.8953

Ye
lp

FM 0.9317 0.8485 0.9377 0.8375 0.9557 0.8430 0.7682 0.8536
NeuMF 0.9315 0.8479 0.8532 0.8414 0.8710 0.8472 0.7644 0.8550

Wide&Deep 0.9680 0.8445 0.9014 0.8342 0.9106 0.8419 0.7824 0.8511
GC-MC 0.9288 0.8612 0.8285 0.8325 0.8615 0.8278 0.7603 0.8771

DropoutNet 0.9418 0.8284 0.8390 0.8432 0.8444 0.8314 0.8084 0.8370
Heater 0.9383 0.8293 0.8168 0.8495 0.8276 0.8360 0.7875 0.8311
MeLU 0.8907 0.8484 0.7857 0.8386 0.7967 0.8443 0.7750 0.8468

MetaEmb 0.9284 0.8571 0.9101 0.8379 0.9205 0.8388 0.7604 0.8682
MAMO 0.8662 0.8204 0.7581 0.8384 0.7667 0.8367 0.7520 0.8207
MetaHIN 0.8572 0.8244 0.7483 0.8409 0.7583 0.8348 0.7445 0.8381
PAML 0.8943 0.8225 0.7989 0.8289 0.8076 0.8312 0.7694 0.8814
GME 0.9011 0.8463 0.7730 0.8553 0.7928 0.8465 0.7581 0.8451
M2EU 0.8286 0.8711 0.7452 0.8610 0.7468 0.8654 0.7074 0.8828

model. Similar to the work [25], we only evaluate the impacts of
these components on experimental results in the scenario UIC.

In Fig. 2, we can observe that results are optimal when both
inherent attributes and interaction information are taken into ac-
count to identify similar users. Due to the sparsity of user-item
interactions in cold-start scenarios, inherent attributes play more
important roles in identifying similar users than interaction infor-
mation. Besides, we explain some concepts defined in Table 3: "S"
denotes the top 𝐾 similar users, "A" denotes the proposed atten-
tion mechanism, "RW" denotes the different weight matrices at
the rating level, "WS" denotes the strategy of weight sharing, "P"
denotes the preference-specific adapter, "D" denotes the dropout

action, "I" denotes incremental learning and "-" denotes removing
the following component. Obviously, all the components in the
model play positive roles in cold-start scenarios.

Firstly, we evaluate the impact of incorporating the information
of the top 𝐾 similar users into user representations. When the top
𝐾 similar users are removed, M2EU-S yields the worse performance
on these datasets. Besides, the information of the top𝐾 similar users
might be unable to make positive effects on experimental results if
aggregated by mean pooling, 𝑖 .𝑒 ., M2EU-A. Fortunately, we present
a novel attention mechanism to aggregate the information of the
top 𝐾 similar users, which avoids this problem effectively.
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Table 3: Ablation study in UIC.

Model Douban Book MovieLens Yelp
MAE NDCG@5 MAE NDCG@5 MAE NDCG@5

M2EU 0.5961 0.9191 0.7916 0.8830 0.7468 0.8654
M2EU-S 0.6083 0.9155 0.8163 0.8781 0.7790 0.8511
M2EU-A 0.6186 0.9114 0.7969 0.8816 0.7705 0.8605
M2EU-RW 0.6336 0.8846 0.8937 0.8085 0.8443 0.8392
M2EU-WS 0.6033 0.9166 0.7954 0.8793 0.7634 0.8610
M2EU-P 0.6093 0.9065 0.8017 0.8798 0.7554 0.8564
M2EU-D 0.6296 0.8946 0.8124 0.8798 0.7607 0.8606
M2EU-I 0.6340 0.8772 0.8089 0.8748 0.7778 0.8491

Figure 2: Impact of two factors in identifying similar users.

Then, we study the efficiency of the different weight matrices
corresponding to the different ratings. M2EU-RW addresses the
items rated differently with the same weight matrix, which under-
performs M2EU evidently. In addition, we compare M2EU with the
model M2EU-WS, whose results verify the validity of the weight-
sharing strategy. In a sense, the less meta-training data is, the more
important role the weight-sharing strategy will play.

At last, we explore the contributions of the other three compo-
nents adopted in M2EU. M2EU-P locally updates the parameters 𝜙
instead of 𝜙𝑢 , which implies that M2EU-P is unable to further im-
prove the prediction performance with user representations. M2EU-
D trains the tasks without dropout action in user-item interactions
and similar users, which not only hardly generalizes to the cold-
start scenarios, but easily causes over-fitting. M2EU-I cuts off the
relation of the parameters learned from the new and previous task
batches, which tends to make the trained model only suitable for
the new tasks. The experimental results in Table 3 indicate that the
three components are all indispensable parts of our method.

5.2.3 Parameter Analysis. We also investigate the impacts of key
parameters by analyzing how they affect the experimental results
on the three datasets.

Our model M2EU enriches user representations by incorporating
the information of the top 𝐾 similar users, where the 𝐾 value has
an important influence on the performance of the recommender
system. Therefore, we plot the experimental results of M2EU𝑤.𝑟 .𝑡 .
MAE in four scenarios as 𝐾 is set at 5 intervals in Fig. 3 (a). With
the 𝐾 value continuing to grow, the value has an ascent trend
after an initial decline. We observe that M2EU achieves optimal
performance when the 𝐾 value is set to 10 on Douban Book and
MovieLens while 15 on Yelp, which indicates incorporating a limited
number of similar users leads to optimal performances in our model.

We also study the impact of the number of local updates on
the performance of the recommender system. Fig. 3 (b) shows the

Figure 3: Parameter analysis in different settings.

tendency of MAE obtained from M2EU with the number of local
updates varying from 0 to 5. It is evident that the MAE in M2EU
without fine-tuning is larger than that in the model undergoing
some local updates, which proves the meta-learning strategy is
effective for the cold-start problem. The MAE in four scenarios
gradually decreases slowly after one gradient update. Here, we set
the maximum value as 5 to ensure that M2EU reaches the optimal
performance. According to the tendency of MAE in four scenarios,
there may not be a significant improvement in performance but
complex calculations when the number of local updates is over 5.

6 CONCLUSION
In this paper, we propose a novel meta-learning approach called
M2EU to alleviate the cold-start problem. In M2EU, user repre-
sentations are enriched by incorporating the information of the
top 𝐾 similar users. Besides, we design an attention mechanism
to aggregate these similar user embeddings, which promotes user
representations to reflect user preferences more clearly. For the user
and item embeddings, we set different neural layers to generate
them at the rating level. To avoid learning the parameters inad-
equately on some rating levels, we introduce the weight-sharing
strategy to our meta-learning model, which makes most shared
weight matrix parameters learned through each user-item inter-
action. We also utilize a preference-specific adapter for prediction
and train the task batches with the incremental learning strategy to
further improve the recommendation performance in cold-start sce-
narios. Experimental results on three public datasets show M2EU
achieves better results compared with state-of-the-art methods.
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